282

研究論文 寺崎旭: 異材継手の界面接合部の端部に存在するき裂の 9 値について

異材継手の界面接合部の端部に存在するき裂の 9 値について*

ー異材継手の強度評価試験片寸法について(第2報)ー

寺崎 俊夫**,秋山 哲也***,,平居 孝之*****

Study of g value of Edge Crack Existing along Bond Line of Joint Composed of Dissimilar Materials

-Study of Specimen Size for Estimating Joint Strength of Dissimilar Materials (Part 2)-

by Toshio Terasaki**, Tetsuya Akiyama***, and Takayuki Hirai****

The energy release rate, g, used for estimating the joint strength of dissimilar material joints with defect has been investigated by means of a boundary element method (BEM). Size and material parameters of g value in both load and residual stress fields were derived. The main conclusions are as follows: 1) In a thermal stress filed, the relation between g value and material properties is given by the following equation;

For the case of Poisson's ratios of dissimilar materials being equal,

 $g/E^{A}\{(\alpha^{A}-\alpha^{B}) T\}^{2}a=f(E^{B}/E^{A}, \nu^{A}=\nu^{B})$

where E is Young's modulus. ν is Poissons' ratio. α is a coefficient of linear expansion.

T is temperature difference. a is half length of crack.

Suffix A and B mean materials A and B.

亖

For the case of ν^{A} being different from ν^{B} ,

 $g/E^{A}(\alpha^{A}T)^{2}a = g(E^{B}/E^{A}, \nu^{A}, \nu^{B}, \alpha^{B}/\alpha^{A})$

2) When the height of specimen, h, is greater than the width of specimen, b, h, hardly affects g value in both load and residual stress fields.

3) When b is greater than twice of h, g value is almost constant in both fields.

Key Words: Edge crack; Energy release rate; Dissimilar joint; Size effect; Boundary element method

1. 緒

異材継手に外荷重が作用したとき、界面端部は応力の 特異点になるい。拡散接合やロウ付けのように、接合後 の冷却過程での異材の温度変化が等しい場合にも、残留 応力分布は界面端部に外荷重が作用したときと同じ応力 の特異点になる²⁾. このように界面端部近傍の応力は特 異点を持ち,応力拡大係数と同様に特異項 r^{1-t}の係数 (以後では応力拡大係数と呼ぶ)の大きさで応力の 強 さ が取り扱える、き裂問題では継手の寸法や形状が変化し ても、特異項の指数(1-t)が-0.5と一定であるため、 応力拡大係数が強度を評価する有効なパラメ - タとな る.しかし,異材継手では継手の形状が変化したり,異 材の組合せが異なると指数(1-t)が変化するため³⁾,応 力拡大係数は強度を評価するパラメータとして有効でな い、また、残留応力場においても、界面に垂直な応力が 応力拡大係数の項と他の項の和で与えられるため、応力 分布は応力拡大係数のみで規定できない. このため, 応 力拡大係数は強度を評価するパラメータとしで、有用て ない2).

 「原稿受付 平成2年7月16日 平成2年5月溶接構造研究委員 会で発表

- **正 員 九州工業大学 Member, Kyushu Institute of Technology
- ***正 員 九州工業大学 Member, Kyushu Institute of Technology
- ******非 正 員 大分大学工学部 Non-member, The Faculty of Engineering of Ohita University

接合界面の端部にき裂が存在すると仮定すると、応力 拡大係数は異材の組合せが変わらない限り、特異項の指 数(1-t)が変化しないため、強度評価に利用できる可能 性がある. 9 値は応力拡大係数と結び付いており⁵、エ ネルギー解放率であるから、異材の組合せが変化して も、エネルギー解放率の大小の比較が出来る.従って、 異材継手の強度評価に利用できる可能性のある 9 値の 特徴を明らかにすることは異材継手の強度評価を考える 上で意義のある基礎資料を与えるものと思われる.

本論文では異材継手の接合面端部にき裂を仮定して, 外荷重が作用する場合と残留応力場での 9 値に及ぼす 継手寸法,材料定数の影響を検討した.

2. 9 値の計算方法

2.1 計算方法

エネルギー解法率である 9 値はき裂が単位長さ増加 する際に解放される単位厚さ当りのポテンシャルエネル ギーに等しいため⁴⁾,弾性状態では Rice の J 積分値に 等しくなる⁴⁾.従って,本論文では Fig.1 に示すよう に,J 積分の径路独立性より,J 値を求め,この値を 9 値とした.

計算には平居⁹⁾が開発した間接法に基づく一次要素の 境界要素法を用い,最小要素の長さと最大要素の長さの 比を25倍以下にした.計算に用いた要素数は90から140 であった.J値の径路はき裂先端を原点とする円周と し,円周を20等分した線長の中点の値と線長の積の総和 をJ積分値とした.

Fig.2 の(a)図に示す異種材料の接合継手に外応力 og

溶接学会論文集

Fig. 1 Paths for J integral

を作用させたときの J 値の計算結果を(b)図に示す. 材料 A,Bの高さ $h^4 = h^B(=h) = 30 \text{ mm}, 板幅 2 b = 10 \text{ mm},$ 接合界面の中央にき裂長さ $2a = 1 \text{ mm}, \sigma_g = 1 \text{ MPa}$ を設 定して,平面ひずみの条件で計算した. 材料Aのヤング 率を E^4 ,ポアソン比を ν^4 ,材料Bを E^8 , ν^B とする. 最小要素の長さ 0.1 mm で,径路の半径 r を 0.05, 0.15, 0.25, 0.35 mm として,J 値 (9 値)を計算し た. Fig.2 に示した材料のパラメータ E^B/E^4 を0.1, 0.5, 1.0と変化させた計算結果より,き裂先端に隣接し た要素を用いたJ 値は他の径路のJ 値に比べて少し大 きいこと,他の径路のJ 値は一定値になっていること が分かる.従って,J 積分の径路独立が示されており, 本計算方法で 9 値が計算できることになる.

2.2 計算結果の精度について

異材継手の界面に長さ2aの中央き裂が存在する無限 板での 9 値の理論解が Salganik⁵⁾ により次式で与えら れている.

$$g = \{(\kappa^{A}+1)/\mu^{A} + (\kappa^{B}+1)/\mu^{B}\} \cdot (K_{I}^{2} + K_{II}^{2})/16$$
.....(1)

ただし, $K_{\rm I} + iK_{\rm II} = \sigma_g (1+2i\beta)\sqrt{\pi a} \cdot \exp\{-i\beta \ln (2a)\}/\cosh(\pi\beta)$ $\beta = \ln[\{(\kappa^A/\mu^A + 1/\mu^B)/(\kappa^B/\mu^B + 1/\mu^A)\}]/2\pi$ $\kappa = (\lambda + 3\mu)/(\lambda + \mu) \lambda, \mu : \overline{2} - \times 0$ 定数 $\sigma : ABL = \lambda \kappa \pi \sigma \kappa \pi \sigma \kappa \pi \sigma \kappa \pi \mu = \pi \lambda \kappa \pi \mu$

σ_g: き裂長さに垂直な方向に作用している無限遠方 での外応力

本論文で用いる数値解析法では無限板を取り扱えない、そこで、均質材において、幅2b、高さ2hの有限板のK値が無限板のK値にほぼ等しくなる条件⁶⁾、 $a/b < 0.1 \ge h/b \ge 3$ を参考にして、a/b = 0.05、h/b = 3の有限板で数値解析した。

Table 1 に $E^{B}/E^{4}=0.1$, 0.5, 1.0 で, 外荷重 $\sigma_{g}=1$ MPa での式(1)の理論値 g_{T} と数値解析値 g_{N} を示す. $E^{4}/E^{B}=0.1$ で誤差が一番大きくて約5%である.計算

Fig. 2 Model for calculating J-value and calculation results

に用いた有限板の寸法ではまだ十分に無限板を再現して いない可能性が残されているが、本論文で使用する数値 解析プログラムでは、外荷重が作用するときの g 値 が E^{B}/E^{4} が0.1から1の範囲内で約5%の誤差で計算でき ていると考えられる.

次に、残留応力場での g 値の精度を検討する.前報²⁹ で示した残留応力を求める手法と本報の J 値を求める 方法を結び付けて、g 値を計算した. 異材継手の残留応 力場での g 値の理論解を見つけることが出来なかった ため、材料A, Bの線膨張係数 α^{4} , α^{8} が同じであれ ば、Fig. 2 の計算で用いた外応力場の g 値の計算結果と 残留応力場での g 値の計算結果が同じになる Fig. 3 の モデルを用いた. Fig. 3(a) は完全拘束した異材継手に温 度上昇 T=100 K を付与した図であり、Fig. 3(b) は拘束 をしていない材料A と Bに温度上昇 100 K を与えた と きに生じる変位 u, v を異材継手の接合部以外の境界に 拘束変位 u, v として与えた図である. Fig. 3(a) と(b)の 境界条件が同じとなるため、弾性論では応力状態は同じ となる.

計算結果を Table 2 に示す. 外応力場の 9 値と残留 応力場の 9 値は約0.5%の誤差で一致している.

284 研究論文 寺崎旭:異材継手の界面接合部の端部に存在するき裂の 9 値について

Table 1 Comparison between numerical results and theoretical values of dissimilar material joint with center crack on the bond line Image: A state of the state

	E^{B}/E^{A}			Size of		
	1.0	0.5	0.1	Specimen		
$g_T(MPa \cdot mm)$ $g_N(MPa \cdot mm)$	1.429×10^{-3} 1.442×10^{-3}	$\begin{array}{c c} 2.133 \times 10^{-3} \\ 2.202 \times 10^{-3} \end{array}$	7.603×10 ⁻³ 7.216×10 ⁻³	$b = \infty, h = \infty$ $b = 10, h = 30$		

0.032

 $(E^{4}=1000 \text{ MPa}, \nu^{4}=\nu^{B}=0.3, \sigma_{g}=1 \text{ MPa}, 2a=1 \text{ mm})$

b: half-~idth plate h: plate height of materail A and B

0.009

 g_T : accurate value of g value g_N : numerical result of g value

 $|g_T - g_N|$

 g_T

(a) $\alpha^{A} = \alpha^{B} = 1.2 \times 10^{-5} \text{ K}^{-1}$ T = 100 K

|v|=0.01**8 mm**

Fig. 3 Model for comparing g values between the load and the residual stress fields

Table 2 Comparison between numerical results of load and residual stress fields $(\nu^{A} = \nu^{B} = 0.3, 2a = 10 \text{ mm}, \alpha^{A} = \alpha^{B} = 1.2 \times 10^{-5} (K^{-1}))$

	Plane stress	Plane strain
E ^A (MPa)	100	1000
$E^{B}(MPa)$	10	100
$g_{th}(MPa \cdot mm)$	6.555×10^{-3}	16.17×10 ⁻³
$g_p(MPa \cdot mm)$	6.586×10 ⁻³	16.22×10^{-3}
$\frac{ g_{th} - g_{p} }{g_{p}}$	0.005	0.003

 E^{A} , E^{B} : Young's modulus of material A and B respectively

 α^{A}, α^{B} : Coefficient of linear expansion of material A and B respectively

 g_{th} : g value in the residual stress field

 g_p : g value in the load field

Table 1, Table 2 の誤差より残留応力場の 9 値は約6%の誤差を持つ精度で計算できていると考えられる.

3. 9値の整理パラメータ

本項より以後では界面端部にき裂が界面に沿って存在 する場合,すなわち,界面端部の両サイドにき裂長さ a (mm)のき裂が存在する両サイドき裂を対象とする.

半無限板を2枚接合した異材継手の界面中央部に長さ

2 a のき裂が存在する場合の外荷重による 9 値は式(1)よ り、次式の関数 f の形でパラメータ整理できる.

0.051

$$E^{A}g/\sigma_{g}^{2}a = \{\pi (1+4\beta^{2})/16 \cosh^{2}(\pi\beta)\} \cdot E^{A}/\mu^{A} \cdot \{(\kappa^{B}+1)+(\kappa^{A}+1)\mu^{A}/\mu^{B})\}$$

9 値の整理パラメータである材料のパラメータは無限 板も有限板も同じと考えられる.そこで,有限板での異 材継手の寸法を相似則を利用して⁷⁾,無次元化すれば, 寸法のパラメータ h^4/a , h^B/a , b/a が導かれ,有限板の 9 値は式(3)で整理できると考えられる.

 $E^{A}g/\sigma_{g}^{2}a = g(E^{B}/E^{A}, \nu^{A}, \nu^{B}, h^{A}/a, h^{B}/a, b/a)\cdots(3)$

ただし,gは括弧の中のパラメータの関数

Table 3 は $h^4 = h^B = h$ として,式(3)が成立する事を検 討した数値解析結果である.弾性論から推論できたよう に,式(3)が外荷重場で有効である.

残留応力場では外荷重場の σg に相当する熱荷重が次 式の形の関数 j で与えられる^{7,8)} ことより

 $\sigma_g = E^A \alpha^A T \cdot j(\alpha^B / \alpha^A, E^B / E^A, \nu^A, \nu^A) \quad \dots \dots (4)$

9 値の整理パラメータは式(3)から式(5)の関数 k の形となる.

 $g/E^{A}(\alpha^{A}T)^{2}a = k(\alpha^{B}/\alpha^{A}, E^{B}/E^{A}, \nu^{A}, \nu^{B},$

 $h^{A}/a, h^{B}/a^{A}, b/a$)(5)

Table 4 は $h^{4} = h^{B} = h$ として, パラメータ g/E^{4} . ($\alpha^{A}T$)²a の妥当性を検討した結果であり, ヤング率の比 E^{B}/E^{4} ,線膨張係数の比 a^{B}/α^{4} ,相似比 h/a, b/a が同じ であれば, $g/E^{4}(\alpha^{A}T)^{2}a$ はほぼ同一値となっている.

ポアソン比が材料AとBで同じ場合には,界面端部に 生じる残留応力 $\sigma_R^{ij}(\sigma_x, \sigma_y, \tau_{xy})$ が式(6)の関数 l の形 で整理される²⁾ ことより,残留応力の解放から得られる エネルギー解放率⁴⁾ でもある g 値も式(7)の関数 m で整 で理きる可能性がある.

ただし、式(6)、(7)は $\alpha^{B} \neq \alpha^{4}$ で有効である. Table 5 に $h^{4} = h^{B} = h = 0.02 \text{ mm}, a = 0.001 \text{ mm}, \nu^{4} = \nu^{B} = 0.3, 温度上昇 T = 100 K として、ヤング率の$

溶接学会論文集

$(E^{-}/E^{-}=0,1, \nu^{-}=\nu^{-}=0.5)$						
	Nume	erical cond	itions			
<i>E</i> ^{<i>A</i>} (MPa)	E ^B (MPa)	a (mm)	b (mm)	<i>h</i> (mm)	$g \times 10^{5}$ (MPa·mm)	E ^A g/o _g ² a
1000	100	.001	.02	.02	3.425	34.25
10000	1000	.001	.02	.02	. 3425	34.25
1000	100	.0016	.032	.032	5.474	34.21

Table 3 Validity of the definition of factor $E^{A}g/\sigma_{g}^{2}a$ $(E^{B}/E^{A}=0,1, \nu^{A}=\nu^{B}=0.3)$

Table 4 Validity of the definition of factor $\mathcal{G}/E^{\mathcal{A}}(\alpha^{\mathcal{A}}T)^2 a$ $(E^{\mathcal{B}}/E^{\mathcal{A}}=0.1, \alpha^{\mathcal{B}}/\alpha^{\mathcal{A}}=2, T=100 \text{ K}, \nu^{\mathcal{A}}=\nu^{\mathcal{B}}=0.3)$

Numerical conditions								
<i>E</i> ^{<i>A</i>} (MPa)	<i>E^B</i> (MPa)	$\begin{pmatrix} \alpha^{A} \\ (K^{-1}) \end{pmatrix}$	$\left({{{\mathbf{K}}^{-1}}} ight)$	a (mm)	b (mm)	h (mm)	$g \times 10^{3}$ (MPa·mm)	$g/E^A(\alpha^A T)^2 a$
1000	100	.001	.002	.001	.02	.02	4.673	.4973
100	10	.001	.002	.001	.02	.02	.4673	.4673
1000	100	.01	.02	.001	.02	.02	46.73	.4673
1000	100	.001	.002	.0016	.032	.032	7.496	. 4684

Table 5 Validity of the definition of factor $g/E^4\{(\alpha^B - \alpha^A) T\}^2 a$ (EB/EA-0.1, T-100 K, yA - yB = 0.3, a = 0.001 mm, b = b = 0.02 mm)

$(E^{B}/E^{A}=0.1, T=100 \text{ K}, \nu^{A}=\nu^{B}=0.3, a=0.001 \text{ mm}, b=n=0.02 \text{ mm}$	ŋ
---	---

	Numerical	conditions			
$ \substack{ \alpha^A \ (K^{-1}) } $	$\begin{pmatrix} \alpha^B \\ (K^{-1}) \end{pmatrix}$	<i>E</i> ^A (MPa)	<i>E^B</i> (MPa)	$g \times 10^{3}$ (MPa·mm)	$g/E^{4}\{(\alpha^{B}-\alpha^{A}) T\}^{2}a$
.001	.002	1000	100	4.673	0.4673
.003	.004	100	10	.4606	0.4606

比 $E^{B}/E^{A}=0.1$ を一定としたときの g 値が $g/E^{A}\{(\alpha^{B} - \alpha^{B})T\}^{2}a$ で整理されることを示す.

以上より,残留応力場では異材継手の材料AとBのポ アソン比が異なるときは $g^{4E^{4}}(\alpha^{4T})^{2a}$ で,同じときは $g/E^{4}\{(\alpha^{B}-\alpha^{4})T\}^{2a}$ で g値が整理できることになる. 外応力場では $E^{4}g/\sigma_{g}^{2a}$ で g値が整理できる.

4. 9 値に及ぼすパラメータの影響

材料AとBの高さ h⁴, h^B を同一として, 9 値に及ぼ すパラメータの影響を平面ひずみ条件で検討した.

4.1 外応力場

4.1.1 寸法のパラメータ

寸法のパラメータを板幅 2b の半幅 b を基準に h/b, a/b として,高さ h が g 値に及ぼす影響を Fig.4 に示 す. ヤング率の比 E^B/E^4 が0.1から1に変化しても, h/b が1以上になると, h は g 値に影響していない. なお, $E^B/E^4=1$ では g 値の理論解⁴) があり,高さ h $=\infty$, a/b=0.05 で3.6であり,数値解析値が h=2b で 3.7であり,ほぼ理論値と一致している.

次に、板の高さ h を基準に b/h, a/h として、g 値に 及ぼす板幅の影響を調べる. Fig. 5 にヤング率の比 $E^{B/}$ E^4 を0.1から1と変化したときの g 値の変化を示す. 図中の破線のそばの数値は b が g 値に影響を与えなく なる値であり、ヤング率の比 E^{B/E^4} の値によって変化 している、ヤング率 E^4 , E^8 を入れ換えて逆にしても、 g 値の値が変化しないことを考慮すると、 E^{B}/E^{4} が0.1から10の間にある場合には、図より b/hが2以上で g値に bが影響を与えないことになる.

4.1.2 材料定数のパラメータ

寸法のパラメータを b/h=2, a/h=0.025 として, ヤ ング率の比およびポアソン比が g 値に及ぼす影響を Fig.6 に示す. ポアソン比 $\nu^B=0.3$ と一定にして, ν^A を0.2, 0.3, 0.4と変化させたが, ポアソン比の変化は g 値にあまり影響していない. ヤング率の比 E^B/E^A が 小さくなると g 値は大きく変化しており, 外荷重場では ャング率の比は g 値の主要因子である. また, 式(1)を 使用して, 中央き裂の界面継手の g 値に及ぼすポア ソ ン比の影響を検討した結果, ポアソン比は g 値にほと んど影響を与えなかった.

4.2 残留応力場

4.2.1 寸法のパラメータ

板の高さ h が g 値に及ぼす影響を Fig.7 に示す. 外応力場の場合と異なり, ヤング率の比 E^B/E⁴ が0.1 0.3, 1.0 と変化すると, g 値が高さ h の影響を受けな くなる限界値は Fig.7 の図中に破線で示すように h/b =1.0, 1.5, 2.0 と変化している.しかし, Fig.7 より E^B/E⁴ が0.1から1の範囲にある場合には, h/b>1 の条 件で g 値はおおむね一定値になっていると見なせる よ うである.

Fig.8 に 9 値に及ぼす板幅の影響を示す. b/h が2 以

Fig. 4 Effect of the height of specimen on g value in the load field

Fig. 5 Effect of the half width of specimen on g value in the load field

上では *g* 値がヤング率の比 *E^B/E⁴* の違いによってあま り変化していないこと, *b/h* が1以下ではヤング率の比 *E^B/E⁴* の違いが *g* 値に影響していることなどが分かる. 4.2.2 材料定数のパラメータ

寸法のパラメータを b/h=2, a/h=0.05 として, ヤン グ率の比 E^{B}/E^{4} , ポアソン比が g 値に及ぼす影響を Fig. 9 に示す. 図中の \triangle 印 ($\nu^{4}=0.3$)を結んだ実線と 〇印 ($\nu^{4}=0.2$), 〇印 ($\nu^{4}=0.4$)を比較すると, 外応

Fig. 6 Effect of the ratio of Young's modulus E^{B}/E^{A} on \mathcal{G} value in the load field

Fig. 7 Effect of the height of specimen on g value in the residual stress field

力場の場合と異なり、ポアソン比は g 値にわずかに 影響を及ぼしている.しかし、おおむねポアソン比は g 値にあまり影響を与えないとみなせる.従って、g 値の整理パラメータとして、 $g/E^4\{(\alpha^B - \alpha^A)T\}^2a$ が使用でき、材料のパラメータとして E^B/E^4 が重要となる式(7)で g 値を検討できる.残留応力場での g 値に及ぼすヤング率の比 E^B/E^4 の影響は Fig. 9 から分かるように、Fig. 6 の外応力場ほど顕著でない.

溶接学会論文集

Fig. 8 Effect of the half width of specimen on g value in the residual stress field

Fig. 9 Effect of the ratio of Young's modulus EA and E^B of dissimilar materials on g value in the residual stress field

5. 結 論

異材継手の界面に両サイドき裂が存在するときの 9 値を数値解析により検討した結果,次の結論が得られた.

1) 外応力場の g 値はヤング率 E^{4} , 外応力 σ_{g} , き 裂長さ a で無次元化した $E^{4}g/\sigma_{g}^{2}a$ の形で材料のパラ メータ E^{8}/E^{4} , ν^{4} , ν^{B} , 寸法のパラメータ h^{4}/a , h^{B}/a , b/a の関数になる. 2) 寸法が同じ材料AとBの異材継手を外応力場で数 値解析した結果,き裂長さ a が板の高さ h,板幅 b に 比べて十分に小さい範囲内で,次の知見が得られた.

a) ポアソン比は *9* 値にほとんど影響しない.

b) ヤング率の比 E^{B}/E^{4} は g 値に大きな影響を与える.

c) 板の高さ h が板の半幅 b より大きくなると, h は g 値に影響を与えない.

d) 板の半幅 b が板の高さ h の 2 倍以上になると, b は g 値に影響を与えない.

3) 残留応力場の g 値は異材 A とBのポアソン比が異 なるときは $g/E^4(\alpha^{4T})^2a$ の形で材料のパラメータ $\alpha^{B/}$ $\alpha^{4}, E^{B/}E^{4}, \nu^{4}, \nu^{4}, 寸法のパラメータ h^{4/a}, h^{B/a}, b/a$ の関数になる. 異材 A と B の ポ アソン比 が等しくて, 線膨張係数が異なる時は, $g/E^{4}\{(\alpha^{B}-\alpha^{4})T\}^{2a}$ の形で, 材料のパラメータ $E^{B/}E^{4}$, ν , 寸法のパラメータ $h^{4/a}$, $h^{B/a}$, b/a の関数となる.

4) 寸法が同じ材料AとBの異材継手を残留応力場で 数値解析した結果,き裂長さ a が板の高さ h,板幅 b に 比べて十分に小さい範囲内で,次の知見が得られた.

a) ポアソン比は 9 値にわずかに影響を与える.

b) b/h>2 の条件範囲において、ヤング率の比 E^B/ E^A は g 値に顕著な影響を与えない.

c) 板の高さ h が g 値に影響を与えなくなる限界値 h/b はヤング率の比 E^{B}/E^{4} の影響を受けるが,第1近 似として $h/b \ge 1$ で h は g 値にあまり影響を与えない.

d) 板の幅 2 b が g 値に影響を与えなくなる限界値 b/h はヤング率の比 E^{B}/E^{A} の影響を受けるが,第1近 似として $b/h \ge 2$ で b は g 値にあまり影響を与えない.

参考文献

- D. B. Bogy: The Plane Solution for Joined Dissimilar Elastic Semistrips Under Tension, Trans. ASME, 1975, pp. 93-99
- (2) 寺崎,秋山,平居,瀬尾:界面端部の近傍に生じる残留応力に ついて,溶接学会論文集Vol. 8, No. 4, p. 487
- M. L. Williams : Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension, J. Appl. Mech. Vol. 19 (1952), 526
- 4) 岡村弘之:線形破壞力学, 培風館(1976), p. 56, p. 69
- R. L. Salganik : The Brittle Fracture of Cemented Bodies, Prikl. Mat. Mekh., Vol. 27 (1963), p. 1948
- 6) 石田誠:き裂の弾性解析と応力拡大係数,培風館(1976), p. 154
- (7) 寺崎,瀬尾,平居:残留応力の整理パラメータ,溶接学会論文 集, Vol. 5 (1987), No. 4, p. 533
- 8) 寺崎,平居,瀬尾:残留応力に及ぼす材料定数,試験片寸法の 影響,溶接学会論文集, Vol. 6 (1988), No. 2, p. 284
- 9) 平居孝之:弾性解析プログラムとその使い方,理工図書(1984), p. 152